• Rémi Brissiaud

    Bibliographies : 

    Bibliographie par Michel Delord : ici

    Bibliographie Rémi Brissiaud sur la lecture : ici

    Bibliographie (à compléter) sur le site des éditions Retz : ici

    Bibliographie (2000-2005) sur le site CRAC : ici

    --------------------------------------------------------------------------------------------------------------------

  • Auteur : Rémi Brissiaud.

    Source : http://www.cafepedagogique.net/lesdossiers/Pages/2014/060614_RBrissiaud.aspx

    Réponse à Marie-Hélène Salin, Marie-Lise Peltier, Joël Briand et Roland Charnay & alii, 

    ------------------------------------------------------------------------------------------------------------------

    Début : "Après les rythmes et le socle commun, un troisième dossier susceptible de déchirer la communauté scolaire va bientôt faire l’actualité : l’élaboration de nouveaux programmes pour l’école maternelle et élémentaire. Ainsi, la commission maternelle du Conseil Supérieur des Programmes devrait rendre son projet de programmes vers la mi-juillet. Or il y a des acteurs dans le domaine de l’enseignement des nombres à l’école qui, jusqu’ici, étaient restés particulièrement silencieux : les défenseurs des programmes de 2002.

    Tardivement, ils viennent de prendre la parole dans un texte paru sur le Café Pédagogique le 10 juin dernier[i]. Les auteurs de ce texte sont quatre didacticiens des mathématiques, Marie-Hélène Salin, Marie-Lise Peltier, Joël Briand et Roland Charnay. Trois autres maîtres de conférences de didactique des mathématiques l’ont cosigné sans avoir participé à sa rédaction. Or, tous ces chercheurs ont été soit responsables, soit associés au processus d’élaboration des programmes de 2002 et, en tout cas, ils les ont fortement défendus par le passé. Leur expérience commune remonte même plus loin car ils ont tous peu ou prou été associés à ce qu’on peut considérer comme un tournant didactique pour l’école française : la réhabilitation de l’enseignement du comptage-numérotage en 1986.

    Il faut évidemment se réjouir que les initiateurs de ce tournant didactique s’expriment aujourd’hui. En effet, une étude de Thierry Rocher[ii] a montré que les performances en calcul des élèves de CM2 se sont effondrées entre 1987 et 1999 et, depuis près de cinq ans qu’est parue cette étude, le silence de ces chercheurs sur ce phénomène, était assourdissant. Rappelons que Thierry Rocher a montré qu’entre 1987 et 1999 la moyenne générale des élèves de CM2 à une épreuve de calculs variés a baissé de 66% de l’écart-type initial. Or, il faut commencer à s’inquiéter à partir de 20% et une année d’apprentissage dans des enquêtes analogues correspond à 50% de l’écart-type initial environ. Dans la période qui a suivi (1999 – 2007) les performances ont encore baissé mais de manière non significative.

    Cette étude est d’ailleurs l’une de celles qui ont conduit Antoine Prost que l’on ne peut guère soupçonner de « school bashing », à écrire : « Le niveau scolaire baisse, cette fois-ci c’est vrai »[iii] et à poursuivre : « C'est aux professeurs des écoles et à leurs inspecteurs qu'il revient d'y réfléchir collectivement. Et le temps presse : nous avons un vrai problème de pédagogie qui ne se résoudra pas en un jour. »

    Sauvegarde : ici.

    -----------------------------------------------------------------------------------------------------------------

    Auteur : Rémi Brissiaud.

    Sourcehttp://www.cafepedagogique.net/lesdossiers/Pages/2014/060614_RBrissiaud.aspx

    ------------------------------------------------------------------------------------------------------------------

     


    votre commentaire
  • http://page.perso.brissiaud.pagesperso-orange.fr/pages/Page2.html

    Télécharger « Fractions et décimaux cm1.rar »

    PLAN DU TEXTE

    • C’est vraisemblablement au CM1 que se jouent les compétences futures des élèves concernant les décimaux

    • Qu’est-ce qu’un décimal ?

    • Les décimaux écrits avec une virgule : ça ressemble à des entiers, ça se manipule comme des entiers, alors que ce ne sont pas des entiers

    • Un premier choix fondamental : enseigner d’abord les décimaux sous forme de fractions décimales

    • Une équivalence fondamentale pour conceptualiser les fractions : partition de la pluralité et fractionnement de l’unité

    • Un deuxième choix fondamental : donner d’abord du sens à a/b dans un contexte de partition de la pluralité

    Ce qui advient lorsqu’on introduit 11/4 comme "11 quarts"

    Ce qui advient lorsqu’on introduit 11/4 comme "11 divisé par 4" dans un contexte de partition de la pluralité

    Commencer par le sens le moins "naturel" ?

     La notion de conflit entre l’économie de la représentation et l’économie du calcul pour enseigner cette équivalence fondamentale

    Première étape : a / b est défini comme "a divisé par b"

    Deuxième étape : "3 partagé en 4", c’est "3 quarts"

    Troisième étape : équivalences d’écritures et comparaison de fractions

    Quatrième étape : "155 tiers", c’est aussi "155 divisé par 3"

     Les autres choix fondamentaux et la fin de la progression

    Ne pas introduire d’emblée l’addition des fractions

    Utiliser d’abord des unités de mesure non conventionnelles pour favoriser l’appropriation de l’idée de fractionnement

    Enseigner l’écriture à virgule comme un simple changement de notation

    Faire systématiquement oraliser les nombres à virgule, en explicitant les dixièmes, centièmes, etc.

    • Conclusion

    Une comparaison avec les deux progressions de référence (R. Douady, G. Brousseau)

    Quels résultats dans les classes expérimentales ?

     

     


    votre commentaire
  • http://page.perso.brissiaud.pagesperso-orange.fr/pages/Page1.html

    Télécharger « les projets d’IO mieux, mais encore dangereux 2001.rar »

    les projets d’instructions officielles concernant les mathematiques au cycle 3 : mieux, mais encore dangereux.

     

     

    De nouveaux projets d’Instructions Officielles concernant les mathématiques au cycle 3 seront proposés à la discussion des enseignants immédiatement à la rentrée 2001. Lorsqu’on compare le texte proposé à son analogue qui a été débattu il y a deux ans environ, il convient de souligner des progrès réels : on n’y propose plus de suppression de contenus qui vouerait à l’échec toute tentative de rétablir un minimum de cohérence dans ce qui demeure au programme. Et pourtant, certains " allégements " restent proposés alors qu’il est à peu près sûr que leur adoption éloignerait les enfants des milieux populaires de la réussite. Montrons-le.

     

    L’enseignement doit se faire à un niveau de généralité optimum

    Concernant les longueurs, les masses, les contenances, le projet propose de : " Connaître les unités du système métrique et les équivalences entre unités usuelles ". En revanche, concernant les aires, il propose seulement : " Utiliser les unités usuelles : cm2, dm2, m2. ". On se demande évidemment pourquoi le km2 n’est pas dans la liste, mais le plus grave est ailleurs : pourquoi dans le cas des unités d’aires, ne dit-on pas explicitement que l’élève a besoin de connaître les équivalences entre unités usuelles ?L’idée des auteurs du texte est-elle que les enfants apprennent seulement que :

    3, 4 m = 34 dm 3, 4 m = 340 cm 3, 4 m = 3400 mm

    3, 4 g = 34 dg 3, 4 g = 340 cg 3, 4 g = 3400 mg

    3, 4 l = 34 dl 3, 4 l = 340 cl 3, 4 l = 3400 ml

    C’est-à-dire, et de façon générale, que :

    3,4 schtroumpfs = 34 décischtroumpfs 3,4 schtroumpfs = 340 centischtroumpfs et enfin : 3,4 schtroumpfs = 3400 millischtroumpfs

    Si c’est le cas, c’est grave ! En effet, l’élève qui aura raisonné ainsi sur une longue durée (des " déci ", il y en a 10 fois plus, des " centi ", il y en a 100 fois plus, etc.), aura beaucoup de mal à apprendre au collège que cette règle " ne marche pas " pour faire des conversions d’aires, parce que, dans ce cas, les unités successives ne sont pas dans un rapport 10 :

    3, 4 m2 = 340 dm2 3, 4 m2 = 34 000 cm2 3, 4 m2 = 3 400 000 mm2

    Les psychologues de l’apprentissage le savent bien : il est crucial de réfléchir au niveau de généralité auquel il convient d’enseigner le savoir. Lorsqu’on l’enseigne à un niveau trop spécifique (lorsqu’on enseigne une règle qui n’a de valeur que localement), cela peut faire gravement obstacle à l’accès à un savoir plus général. Les didacticiens, eux aussi, le savent bien : ils disent d’un tel enseignement qu’il crée un " obstacle didactique ".

    Tout allégement de programme n’est pas en soi condamnable : on peut considérer, par exemple, que l’allégement de 1995 qui supprimait l’enseignement des conversions entre unités de mesure de volumes, était raisonnable. En effet, comme les conversions entre unités d’aires restaient au programme, l’enfant ne risquait guère d’apprendre une règle fausse et de l’exercer sur une longue période. On peut considérer qu’après 1995, l’enseignement des unités de mesure s’est fait à un niveau de généralité optimum. C’est cet équilibre que les projets de programmes avancés aujourd’hui risquent de rompre.

     

    La mise en route d’un mécanisme de discrimination sociale

    Il n’est pas difficile d’anticiper la réponse des auteurs du projet à l’analyse précédente. Ils répondront vraisemblablement que la connaissance des relations : 1 m2 = 100  dm2 1 m2 = 10 000  cm2 1 m2 = 1 000 000 mmreste au programme mais que cela fait seulement partie des compétences en cours d’acquisition et non des compétences visées ou exigibles. Il n’est d’ailleurs pas exclu que le futur texte d’application le dise explicitement.

    Ce type d’argument passe sous silence l’aspect discriminatoire du choix ainsi fait : certes certains maîtres continueront à enseigner les relations entre unités d’aires, mais ceux qui exercent en milieu populaire et qui, souvent, ont du mal à " boucler le programme ", seront très fortement tentés de ne plus l’enseigner du tout parce que, d’une part, les enseignants du collège aborderont à nouveau ce contenu de connaissance et, d’autre part, parce qu’une connaissance " en cours d’acquisition " peut très bien être seulement au " tout, tout début de son acquisition ".

    Dans les écoles où le métier est moins difficile, les maîtres continueront donc à construire avec leurs élèves des schémas explicitant les relations entre m2, dm2, cmet mm2, comme on l’observe aujourd’hui : ils commenceront évidemment par mettre en évidence qu’un " décimètre carré " n’a pas forcément une forme de carré, parce qu’un triangle peut avoir une aire d’un " décimètre carré ", par exemple (distinction entre aire et forme). Ils demanderont ensuite aux élèves de prendre un " dm2 typique ", c’est-à-dire ayant une forme de carré et d’y faire " apparaître " les cm2 en le quadrillant. Combien y a-t-il de cm2 dans un dm2 ? Puis, au sein de quelques uns des cm2 obtenus, ils demanderont aux élèves de faire " apparaître " les mm2. Et si on continuait à faire apparaître les mm2dans tous les cm2 à l’intérieur d’un dm2, combien y en aurait-il dans ce dm2 ? Etc.

    L’ensemble des élèves, qu’ils aient bénéficié ou non de telles séances, se retrouveront au collège, là où les professeurs de mathématiques affirment de façon quasi-unanime qu’ils n’ont absolument pas de temps à consacrer à l’animation de ce type de séance et qu’ils enseignent d’emblée à leurs élèves à utiliser un " tableau de conversion ". Les enfants des milieux populaires seront donc le plus souvent privés de l’expérience de la construction de schémas explicitant les relations entre unités d’aires pour l’ensemble de leur cursus scolaire.

    Résumons : c’est dans les écoles scolarisant les enfants de milieux populaires que l’abandon de l’enseignement des relations entre unités d’aires, sera massivement observé. Il est d’autre part certain que cet abandon créera un obstacle à la réussite de ces élèves quand ils accèderont au collège parce qu’enseigner les relations entre unités dans les seuls cas où deux unités successives sont dans un rapport 10, conduit à une généralisation erronée. Enfin, la plupart du temps, ces élèves de milieu populaire n’auront même pas la possibilité, au collège, de bénéficier d’un enseignement qui les aide à surmonter l’obstacle crée par l’école élémentaire, en leur expliquant pourquoi dans le cas des aires, le rapport entre deux unités successives est 100 et non 10. Tout est en place pour que cette mesure se traduise par une discrimination sociale dans l’accès au savoir.

     

    Le document d’application peut-il éloigner tout risque ?

    Mais peut-être les membres de la commission d’experts croient-ils qu’ils pourront surmonter ces difficultés en faisant du " document d’application " un texte contraignant l’ensemble des maîtres à animer des séances telles que celle qui vient d’être décrite. L’idée générale serait la suivante : les démarches pédagogiques décrites dans le document d’application apparaîtront tellement pertinentes que la nécessité de les adopter s’imposera à tout enseignant ayant un minimum de conscience professionnelle, quel que soit le lieu où il exerce ! Ce serait particulièrement naïf de la part des membres de cette commission de croire en la possibilité de cette sorte de texte.

    Le dernier texte d’application d’instructions officielles en mathématiques que les responsables du système éducatif ont voulu faire fonctionner ainsi de manière contraignante, date de la fin des années 1970. Celui qui concernait le cycle élémentaire (arrêté du 7 juillet 1978), par exemple, avançait tout un ensemble de préconisations (réduction d’ " écritures additives ", d’ " écritures multiplicatives ", enseignement des fonctions numériques, apprentissage de la technique de la multiplication à l’aide d’un quadrillage, enseignement de la soustraction comme addition à trou, etc.) qui, 10 ans plus tard, étaient presque unanimement condamnées. Pourtant, ce texte s’était principalement inspiré des travaux de l’équipe Ermel de l’INRP. La même équipe, 10 ans plus tard, en aurait complètement transformé une page sur deux. Pourquoi quiconque ferait-il mieux aujourd’hui ? C’est d’autant moins probable que la commission d’experts à l’origine du projet, paraît assez peu représentative des diverses institutions de recherche sur la question : elle ne compte, par exemple, aucun chercheur en psychologie des apprentissages mathématiques. Et ce ne sont pas les deux mois de débats proposés à la rentrée qui permettront la prise en compte des différents points de vue, qu’ils proviennent des praticiens, des didacticiens ou de la psychologie cognitive.

     

    Un autre allégement dangereux :

    l’abandon de la division " poussée après la virgule "

    Avant de conclure, signalons qu’une analyse analogue peut être menée à propos d’un autre " allègement " particulièrement surprenant : la disparition, dans les compétences visées, de la division " poussée après la virgule " (i.e. avec quotient décimal).

    Là encore, une telle réforme conduirait à un programme " en miettes ". D’une part, les élèves d’école élémentaire devraient toujours savoir que le partage de 27 litres en 10 parts égales aboutit à des parts de 2,7 litres chacune, parce que l’égalité 27 / 10 = 2,7 est explicitement au programme. D’autre part, ils n’auront plus à savoir que le partage de 27 litres en 8 parts égales aboutit à des parts de 3,375 litres chacune, parce que la division permettant d’obtenir ce résultat ne sera plus au programme. Là encore, les élèves vont apprendre un fonctionnement très local : ils devront savoir résoudre ce type de problème quand le partage est en 10 ou 100 parts égales mais pas quand il se fait en 8 (ou 3, 4, 5…) parts égales ! C’est d’autant plus étonnant que : 1°) il n’y a guère de meilleur moyen d’apprécier si un élève a compris ce qu’est un nombre décimal que d’aller voir ce qu’il comprend d’une division " qui ne tombe pas juste " et : 2°) l’enseignement de la division décimale ne pose pas de problème spécifique pour peu qu’un élève ait compris le fractionnement décimal, ce qui, fort heureusement, reste visé.

    Comme dans le cas des relations entre unités d’aires, les auteurs du projet tenteront vraisemblablement d’atténuer la portée de leur choix en affirmant que la division décimale reste au programme, même si elle n’apparaît plus dans les compétences visées et exigibles. Peut-être d’ailleurs l’écriront-ils noir sur blanc dans le document d’application. Là encore, il faut attirer leur attention sur l’aspect potentiellement discriminatoire d’un tel raisonnement. Des arguments en tout point similaires à ceux que nous avons avancés concernant les relations entre unités d’aires, pourraient l’être concernant le division avec quotient décimal : ce sont les élèves des milieux populaires qui ont tout à perdre de cet " allégement " de programme.

     

    Penser le curriculum sur le long terme

    Quand on a l’impression que les élèves éprouvent des difficultés face à un contenu de connaissance donné, on peut souvent y remédier en l’abordant différemment en classe. Une autre solution, radicale, consiste évidemment à l’éliminer du programme d’un niveau pour ne l’aborder que plus tard. Les tenants d’une telle logique sont nombreux, mais c’est vraisemblablement un quiproquo qui explique leur audience grandissante. En effet, ceux qui penseraient que les allégements de programmes correspondent nécessairement à un allégement de la tâche des enseignants, se trompent. C’est l’échec scolaire qui rend leur tâche rude. Certains allégements de programmes, parce qu’ils suppriment l’abord de problèmes qu’il faut nécessairement affronter pour progresser, créent de l’échec. Quand il s’agit d’un échec différé, le soulagement temporaire procuré par l’allégement, est une lâcheté pédagogique. Certains allégements compliquent la tâche des pédagogues, plus qu’ils ne la facilitent, du moins lorsqu’on considère les pédagogues en tant que collectivité d’individus engagés dans une tâche commune sur une longue durée.

     

    En résumé, ne plus enseigner les relations entre unités d’aires à l’école élémentaire, ne plus y enseigner la division décimale lorsqu’elle est " poussée après la virgule ", quelles que soient les précautions rhétoriques prises par ceux qui avancent de telles propositions, sont des innovations extrêmement risquées parce que, potentiellement discriminatoires.


    votre commentaire